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I. BACKGROUND:

The understanding of positron processes is an area of
heightened interest in many branches of physics. In par-
ticular the significance of these has long been recognized
in astrophysics. Positrons are produced at a tremendous
rate at the center of the galaxy; estimates from studies of
the 511keV gamma ray line suggests a rate of ≈ 1043e+/s
[1]. Despite 30 years of intense effort the main source of
these positrons has not been identified, for a recent re-
view see [2, 3]. Further a knowledge of the ratio of the sin-
glet state and triplet state photon fluxes would be a valu-
able diagnostic for understanding the physical conditions
in a wide range of astrophysical sources, such as type Ia
supernovae, microquasars, and x-ray binaries [2, 4]; a di-
rect observation of positronium would be an important
contribution to the physical understanding of jets escap-
ing from quasars into the interstellar medium [5]; a study
of 3γ versus 2γ emission would allow the determination of
the temperature and density of the plasma in solar flares
[6]. It is only recently that experimental progress has
been made towards the goal of producing intense beams
of positrons in the laboratory; Chen and her collabora-
tors [7, 8] have succeeded in producing record amounts
of positrons (they estimate 1 million particles per laser
shot) and positrons have been observed in experiments
by firing wakefield accelerated electrons into solid targets
[9]. These new laser driver approaches open up the pos-
sibility that super intense positron sources will become
a reality in the near future and consequently could be
used as diagnostic tools and for the performance of sig-
nificant experiments. Our own particular interest is in
the possibility of using positronium formation as a probe

of plasma properties and studying the positronium frac-
tion in laboratory produced plasmas [4, 10, 11]. In as-
trophysical situations the plasmas of interest consist of
hydrogen and helium atoms and ions, in this paper we
will focus on positron collisions with neutral hydrogen
and helium as well as with singly ionized helium. Our
goal is to produce cross sections of sufficient accuracy
which could be used in modeling of positronium forma-
tion in collisions between positrons and atoms or ions.
We are fortunate to have available high quality charge
exchange cross sectional experimental data for positron-
neutral atom collisions[12] but there are no experiments
for collisions between positrons and ions. Our approach
has been to use the well known classical trajectory Monte
Carlo approach for both the positron and proton projec-
tiles Our strategy is to bench mark our theoretical ap-
proach for proton impact charge exchange before apply-
ing it to the equivalent positron process. Our approach
has been to use the well known classical trajectory Mone
Carlo method for both the positron and proton projec-
tiles.

II. CLASSICAL TRAJECTORY MONTE
APPROACH

The CTMC approach,[13–16] is in essence a computer
experiment. In this method exact classical dynamics are
performed on trajectories whose initial conditions are
chosen from a classical ensemble. The initial energy of
the target atom is fixed from known quantum mechanical
energies, e.g. E0 = −0.5 atomic units (a.u for hydrogen.
It is assumed that the initial coordinates and momenta
are uniformly distributed in phase space on this energy
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shell; this condition effectively defines the classical mi-
crocanonical distribution. Remarkably, Fock [17] showed
that the quantum mechanical probability distribution in
momentum space for the n

th level of the hydrogen atom
is given, in atomic units, by
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n = 2|En| and the identical distribution follows from

the classical microcanonical distribution [13].
The classical nature of the CTMC approach means

that there is capture into all states of the positronium
with no account being taken of the discrete nature of the
energy levels of the positronium. The accuracy we can
expect from the CTMC method is open to dispute; cer-
tainly at low impact energies near threshold one would
expect that the electron will tunnel through the potential
barrier it encounters. This is a quantum mechanical pro-
cess, and therefore entirely absent from the CTMC. At
the other extreme of very high energies all classical cal-
culations have the wrong asymptotic behavior [13, 18].

III. SOURCES OF ERROR

There are three main sources of error inherent in the
CTMC method: (i) the error due to beginning and end-
ing each simulated scattering event (or “run”) with the
projectile and the target at a finite distance from each
other, (ii) the error due to the nonzero step-length in the
numerical Runge-Kutta integration of the equations of
motion, and (iii) statistical error, which decreases with
the total number of runs evaluated. Errors (i) and (ii)
can be controlled explicitly by two parameters in the in-
put of the CTMC program, γ and �, while (iii) can only
be reduced by increasing the number of runs that our
program cycles through for each incident energy.

IV. ERROR PARAMETERS γ AND �

The value of the input parameter γ is approximately
the ratio of the major diameter of the target atom to the
initial distance between projectile and target. Its value
is selected by the user and determines the starting and
ending time of each run through the relationships

γ =
|ZeZn|

EiDi(t−)
=

|ZpZe|
EfDf (t+)

(2)

defined in ([14]), where Zp, Ze, and Zn are the charges
of the projectile, target electron, and target nucleus, re-
spectively; Ei and Ef are the binding energies of the ini-
tially bound target atom, and the finally bound “atom”

resulting from the charge transfer; Di(t−) is the initial
distance between the CM of projectile and target atom
at the beginning of the run; and Df (t+) is the final dis-
tance between projectile and nucleus at the end of the
run. Since the Coloumb interaction before time t− and
after time t+ is neglected, it would seem that the smaller
the choice of γ, the more accurate our simulation will be.
However, as we shrink γ, we will need more steps in the
numerical integration (assuming constant step-size), and
thus the build up of error due to the finite step-size of
the Runge-Kutta method becomes unmanageable. So we
cannot just make γ as small as we wish–we must find a
combination of both γ and � that minimizes error.
The second error parameter, �, determines the step

length of the numerical integration, ∆t, through the fol-
lowing relationship:
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where v and r are the relative velocity and distance be-
tween two particles. Since there are three particles under
consideration, ∆t is actually computed by combining the
above expressions for each two-particle interaction. It is
worth noting that the step size varies with the product
of the charges Zp, Zn. For a fixed value of �, the step
size will be smaller when the charge on either particle
is increased, consequently finite step size problem will
be more if either charge is greater than 1. We measure
these errors by measuring how badly the program vio-
lates conservation of energy. This is done by evaluating
the total energy of all three particles at the beginning
and end of each run. There are four quantities of inter-
est here: the actual initial energy of all particles (Ei);
the initial energy neglecting the interaction between the
projectile and target (Ei,mod); the actual final energy of
all particles (Ef ); and the final energy neglecting the in-
teraction between the new atom and the nucleus–in the
case of capture–(Ef,mod). Each of these four quantities is
evaluated for each event. We can measure the error due
to starting and ending the collision at finite times by the
differences |Ei−Ei,mod| and |Ef −Ef,mod|. Likewise, we
can measure the error due to finite step size in the nu-
merical integration using the difference |Ei − Ef |; if the
integration were 100% accurate, this difference would al-
ways be zero. We measure the average and the standard
deviation of these differences each time the program is
run. If for a given impact energy the error exceeds a cer-
tain limit, the result is not used. For positron projectiles,
this limit is that the average of the absolute difference
between Ei and Ef plus the standard deviation of this
difference should be less than 35% of the impact energy
of the positron:

|Ei − Ef |+ σ|Ei−Ef | < .35Te+ (4)

Enforcing this inequality necessitated accepting quite
large statistical errors at low energies for positron im-
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pact processes It is well known from numerical treat-
ments of the Kepler problem in celestial mechanics that
standard integrating methods such as the Runge Kutta
technique can give rise to similar violations in energy
conservation[19]

V. STATISTICAL ERROR

The statistical error associated with the cross sections
calculated by the CTMC program, is given by the bino-
mial distribution ([13, 14]). Let us denote a particular
event (such as charge transfer) by q, and the number of
occurrences of that event by nq. Then, letting n be the
total number of runs, the statistical error associated with
the cross section for q is given by

σq

�
n− nq

nq · n

� 1
2

(5)

where σq is the “experimental estimate” of the cross sec-
tion for a particular property of the final state, q, and is
defined by

σq =
nq

n
πa

2
max (6)

where amax is the radius beyond which event q no longer
occurs. The maximum statistical error is then

1

2
√
n
πa

2
max (7)

and occurs when nq = 1
2n. Figure 1 is a plot of how the

error varies with nq for a typical CTMC calculation of
10,000 runs.
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where σq is the “experimental estimate” of the cross section for a particular
property of the final state, q, and is defined by
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nq

n
πa2max, (4)

where amax is the radius beyond which event q no longer occurs. The maxi-
mum statistical error is then

1

2
√
n
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and occurs when nq =
1
2n. Figure 1 is a plot of how the error varies with nq

for a typical CTMC calculation of 10,000 runs.
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Figure 1: Statistical error as a function of nq, with n = 10, 000.
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FIG. 1. Statistical error as a function of nq, with n = 10, 000.

VI. RESULTS

A. Hydrogen

FIG. 2. Charge exchange cross sections for proton collisions
with neutral hydrogen:our theoretical calculations, CTMC,
crosses, compared with the absolute experimental data of [20],
solid circles

Although the microcanonical distribution returns the
quantum mechanical momentum distribution, the spatial
distribution of the charge is less good. To correct for this
Cohen[21] derived a new phase space distribution where
the radial distribution is exact and the momentum dis-
tribution remains remains close to the quantum provided
only that the target electron has a velocity(ve < 9). Us-
ing this distribution the ionization cross sections are im-
proved but there is little change to the charge exchange
results,[18, 22]. Since our interest here is exclusively with
the latter we have used the “regular” microcanonical dis-
tributions in all our calculations. As we approach thresh-
old the CTMC is at its weakest : as it does not recognize
the sharp quantum thresholds and has no way of includ-
ing tunneling effects and we need to chose a very large
initial distance,(very small γ. We see that at its lowest
energies our results peak and begin to fall away from ex-
periment, we suspect that this is primarily due to the
absence of tunneling in our calculations.[23]. The or-
bit of the positron will be fragile compared to than that
of the much more massive proton and consequently one
could reasonably assume that at the lowest energy it will
not be able to get close enough for tunneling to become
significant. Problems still exist in that because the ap-
proach will not recognize the correct quantum threshold.
We have attempted to rectify this by shifting the origin
i.e.we assume that the impact energy in the code Ecode

is related to the real impact energy by

E = Ecode + Ethreshold
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where Ethreshold is the quantum threshold. Further as we
approach threshold the problem we discussed in Section
III of numerical violation of energy conservation, becomes
more pronounced we tolerated a greater statistical error
until such time the inequality in (4) was violated.

FIG. 3. Charge exchange cross sections for positron collisions
with neutral hydrogen:our threshold corrected CTMC calcula-
tions, crosses, compared with the absolute experimental data
of [24], solid circles

In Figure 3 we show our calculations compared with
the experiment of Zhou et al [24]. Agreement is encour-
aging, in that we predict the absolute magnitude and
position of the peak in the cross section correctly.

B. Helium

Following[25] we represented the potential V (r) be-
tween the active electron and the He

+ by a model po-
tential and by an effective Coulomb potential

Veffective = 1.688

and while the model potential of [25] gives a better mo-
mentum distribution the results are sufficiently close that
we only show the cross sections calculated with the sim-
pler effective charge potential. In Figure 4 we show a
comparison between our CTMC calculation and experi-
ment and while agreement is good for the range of values
where a comparison is possible we note that our calcu-
lations exhibit the same qualitative behavior as we saw
for hydrogen with a low energy peak so tunneling ef-
fects might well increase the cross section in this region.
Our threshold corrected CTMC calculations are in good
agreement with experiment for the positron case. Again
the peak position is well predicted but the absolute mag-
nitude at the peak is a little elevated above experiment

FIG. 4. Charge exchange cross sections for proton collisions
with neutral helium:,CTMC, crosses, compared with the abso-
lute experimental data of [27], solid circles

Our positron calculations are again threshold cor-
rected.

FIG. 5. Positronium formation cross sections for positron
collisions with neutral helium:threshold corrected CTMC,
crosses, compared with the absolute experimental data of
[12, 26] solid circles
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C. He
+

FIG. 6. charge exchange cross sections for proton collisions
with He

+:our theoretical calculations, CTMC, crosses, com-
pared with the absolute experimental data of [28] solid circles
and [29],open circles

Finally we calculated the CTMC charge exchange cross
section for singly ionized helium. In Figure 6 we show a
comparison between the CTMC calculations and exper-
iment for a proton on He

+. Both the position and the
absolute magnitude of the peak in the experimental data
is well represented, however the theoretical distribution
is a little too broad. We were sufficiently encouraged that
we calculated the threshold corrected CTMC for positron
on He

+. Results are shown in Figure 7. There is no ex-
perimental data available however given the agreement
we have found with other calculations in this paper it
would seem likely that these results should be reason-
ably accurate and would be useful as part of a plasma
simulation code which after all is our primary purpose.

FIG. 7. Positronium formation cross sections for positron
collisions with He

+:in the CTMCqt, crosses,

VII. CONCLUSIONS

We used the classical trajectory Monte Carlo method
to calculate charge exchange cross sections for positron
collisions with hydrogen, neutral and singly ionized he-
lium targets with the ultimate purpose of including these
results in plasma simulations. We benchmarked these re-
sults by comparison with experiment where available and
by using the same method to calculate proton collisions
with the same targets. Agreement was satisfactory in
all cases The CTMC remains a useful way of estimating
charge exchange cross sections, however it is important to
keep careful track of the errors inherent in the code and
it is misleading to present results without at least dis-
playing the statistical errors. Further for the low energy
positron collisions we found that the numerical integra-
tion using the standard 4th order Runge Kutta gave rise
to a numerical violation of energy conservation and the
containment of this error placed a limit on how small our
statistical error could be made. We hope to return to
this problem latter.
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